Conventional Machine Learning for Social Choice
نویسندگان
چکیده
Deciding the outcome of an election when voters have provided only partial orderings over their preferences requires voting rules that accommodate missing data. While existing techniques, including considerable recent work, address missingness through circumvention, we propose the novel application of conventional machine learning techniques to predict the missing components of ballots via latent patterns in the information that voters are able to provide. We show that suitable predictive features can be extracted from the data, and demonstrate the high performance of our new framework on the ballots from many real world elections, including comparisons with existing techniques for voting with partial orderings. Our technique offers a new and interesting conceptualization of the problem, with stronger connections to machine learning than conventional social choice techniques.
منابع مشابه
Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملDesigning social choice mechanisms using machine learning
Social choice studies ordinal preference and information aggregation with applications in high-stakes political elections as well as low-stakes movie rating websites. Recently, computational aspects of classical social choice mechanisms have been extensively investigated, yet not much has been done in designing new mechanisms with the help of computational techniques. In this paper, we outline ...
متن کاملSocial Choice for Partial Preferences Using Imputation
Within the field of multiagent systems, the area of computational social choice considers the problems arising when decisions must be made collectively by a group of agents. Usually such systems collect a ranking of the alternatives from each member of the group in turn, and aggregate these individual rankings to arrive at a collective decision. However, when there are many alternatives to cons...
متن کاملA Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles
Electric and hybrid electric vehicles are attractive candidates for sustainable transportation due to its higher efficiency and low emission. The critical choice on the electric motors is its capability of motoring and regenerative braking characteristics. Switched reluctance machines are viable candidate as with proper control and extended constant power range operation replacing the multi-gea...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015